Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

Sake Finance (Astar)

Prepared By: Xiaomi Huang

PeckShield
December 6, 2024

1/15 PeckShield Audit Report #: 2024-280

contact@peckshield.com

Public

Document Properties

Client Sake Finance
Title Smart Contract Audit Report
Target Sake Finance

Version 1.0

Author Xuxian Jiang

Auditors Daisy Cao, Xuxian Jiang

FEVIENWEGHOA Xiaomi Huang

AVSI oA Xuxian Jiang

Classification B

Version Info

Version Date Author(s) Description
1.0 December 6, 2024 | Xuxian Jiang | Final Release
1.0-rc1 | December 6, 2024 | Xuxian Jiang | Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Xiaomi Huang
contact@peckshield.com

2/15 PeckShield Audit Report #: 2024-280

Public

Contents
1 Introduction 4
1.1 About Sake Finance (Astar) 4
1.2 About PeckShield 5
1.3 Methodology 5
1.4 Disclaimer 7
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings 10
3 Detailed Results 11
3.1 Duplicate Token Handling in SakeAstarSiloAccount 11
3.2 Trust Issue Of Admin Keys 12
4 Conclusion 14
References 15

3/15 PeckShield Audit Report #: 2024-280

Public

1 Introduction

Given the opportunity to review the design document and related smart contract source code of the
Sake Finance (Astar) protocol, we outline in the report our systematic approach to evaluate poten-
tial security issues in the smart contract implementation, expose possible semantic inconsistencies
between smart contract code and design document, and provide additional suggestions or recom-
mendations for improvement. Our results show that the given version of smart contracts can be
further improved due to the presence of several issues related to either security or performance. This

document outlines our audit results.

1.1 About Sake Finance (Astar)

Sake Finance is an innovative platform that introduces the concept of on-chain AT agents to the
world of decentralized finance and beyond. At its core, Sake Finance is designed to empower users
with autonomous, intelligent agents capable of executing a broad spectrum of tasks directly on the
blockchain. These tasks range from complex financial transactions to dynamic roles within interactive
gaming environments, all performed with a level of sophistication and adaptability previously unseen

in traditional crypto bots. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of The Sake Finance Protocol

Name | Sake Finance
Type | EVM Smart Contract
Platform | Solidity
Audit Method | Whitebox
Latest Audit Report | December 6, 2024

In the following, we show the Git repository of reviewed files and the commit hash values used
in this audit.

e https://github.com/AgentFi/agentfi-contracts-astar.git (f489cd2)

4/15 PeckShield Audit Report #: 2024-280

Public

1.2 About PeckShield

PeckShield Inc. [7] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High Medium
§ Medium Medium
E

Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [6]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would

5/15 PeckShield Audit Report #: 2024-280

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item |
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

6/15

PeckShield Audit Report #: 2024-280

Public

additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [5], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

7/15 PeckShield Audit Report #: 2024-280

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/15

PeckShield Audit Report #: 2024-280

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Sake Finance (Astar)
protocol. During the first phase of our audit, we study the smart contract source code and run our
in-house static code analyzer through the codebase. The purpose here is to statically identify known
coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further
manually review business logics, examine system operations, and place DeFi-related aspects under

scrutiny to uncover possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

Informational
Total

NOlHRrIRLR|IO|O

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions

of each of them are in Section 3.

9/15 PeckShield Audit Report #: 2024-280

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity

vulnerability and 1 low-severity vulnerability.

Table 2.1: Key Sake Finance Audit Findings

Category Status
Business Logic Resolved

ID Severity Title
PVE-001 Low Duplicate Token Handling in SakeAst-
arSiloAccount
PVE-002 | Medium | Trust Issue of Admin Keys Security Features | Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to

Section 3 for details.

10/15 PeckShield Audit Report #: 2024-280

165
166
167
168
169
170
171
172
173
174
175
176
177

Public

3

Detailed Results

3.1 Duplicate Token Handling in SakeAstarSiloAccount

Desc

ID: PVE-001
Severity: Low
Likelihood: Low

Impact: Low

ription

e Target: SakeAstarSiloAccount
e Category: Business Logic [4]
e CWE subcategory: CWE-837 [2]

Sake Finance has a flexible user account system that supports different account types used for different

purposes. For example, a specific account type SakeAstarSiloAccount is used by Sake Astr Silos to

handle the bridge-deposit and withdrawal of wASTR tokens. While examining the related bridge-deposit

logic, we notice a possible issue that may need to be addressed.

To elaborate, we show below the code snippet of the related routine, i.e., bridgeTokens(). As the

name indicates, this routine is used to deposit a given amount of tokens from the bridge. It comes

to our attention that if the given array has duplicate tokens, the intended allowance should be the

sum of each individual allownace for the same token. The current implementation only sets up the

last allowance in the given tokens array (line 176).

for(uint256 i = 0; i < tokens.length; i++) {

address token = tokens[i].token;
uint256 amount = tokens[i].amount;
// if bridging the gas token
if (token == address(0)) {
// add to gas token amount
gasTokenAmount += amount;
}
// if bridging an erc20
else {
// set allowance
SafeERC20.forceApprove (IERC20 (token),

bridge, amount);

11/15

PeckShield Audit Report #: 2024-280

178

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

Public

LiSth1g 3.1: SakeAstarSiloAccount: :bridgeTokens ()

Recommendation Revise the above routine to properly set up the token allowance for token

bridge operations.

Status This issue has been resolved as the team plans to sanitize the input before calling the

above contract.

3.2 Trust Issue Of Admin Keys

e |D: PVE-002 e Target: Multiple Contracts

e Severity: Medium e Category: Security Features [3]
o Likelihood: Medium e CWE subcategory: CWE-287 [1]

e Impact: Medium

Description

In the Sake Finance contract, there is a privileged account (owner) that plays a critical role in governing
and regulating the protocol-wide operations (e.g., configure various system parameters, manage fac-
tory, and lock contract accounts). In the following, we show the representative functions potentially
affected by the privilege of the privileged account.

function postAgentCreationSettings(
AgentCreationSettings calldata creationSettings

) external override onlyOwner {
if (_isSettingsFrozen) revert Errors.CreationSettingsFrozen();
Calls.verifyHasCode (creationSettings.agentImplementation);
_agentImplementation = creationSettings.agentImplementation;
_strategyInitializationCall = creationSettings.strategyInitializationCall;
_isActive = creationSettings.isActive;
emit AgentCreationSettingsPosted();

/% *

* O@notice Freezes the current creation settings.

* Can only be called by the contract owner.

*/

function freezeAgentCreationSettings () external override onlyOwner {
if (_isSettingsFrozen) revert Errors.CreationSettingsFrozen();
_isSettingsFrozen = true;

emit AgentCreationSettingsFrozen();

/* %

12/15 PeckShield Audit Report #: 2024-280

215
216
217
218
219
220
221
222

Public

* QO@notice Pauses or unpauses creation with this factory.

* Can only be called by the contract owner.

* Q@param activate True to activate, false to deactivate.

*/

function activateAgentCreationSettings(bool activate) external override onlyOwner {
_isActive = activate;

emit AgentCreationSettingsPosted();

Listing 3.2: Example Privileged Operations in simpleAgentFactory

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a pao-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive system

parameters, which directly undermines the assumption of the protocol design.

Recommendation Promptly transfer the privileged account to the intended pao-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-

tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed and will be mitigated with the use of a multi-sig to

manage the privileged account.

13/15 PeckShield Audit Report #: 2024-280

Public

4 Conclusion

In this audit, we have analyzed the design and implementation of the Sake Finance protocol, which is
an innovative platform that introduces the concept of on-chain A1 agents to the world of decentral-
ized finance and beyond. At its core, Sake Finance is designed to empower users with autonomous,
intelligent agents capable of executing a broad spectrum of tasks directly on the blockchain. These
tasks range from complex financial transactions to dynamic roles within interactive gaming environ-
ments, all performed with a level of sophistication and adaptability previously unseen in traditional
crypto bots. The current code base is well structured and neatly organized. Those identified issues
are promptly confirmed and addressed.

Meanwhile, we need to emphasize that solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in

scope/coverage.

14/15 PeckShield Audit Report #: 2024-280

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/
data/definitions/837.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.
[5] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[6] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk Rating

Methodology.

[7] PeckShield. PeckShield Inc. https://www.peckshield.com.

15/15 PeckShield Audit Report #: 2024-280

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Sake Finance (Astar)
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Duplicate Token Handling in SakeAstarSiloAccount
	Trust Issue Of Admin Keys

	Conclusion
	References

