Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

Sake Finance (Soneium)

Prepared By: Xiaomi Huang

PeckShield
February 17, 2025

1/16 PeckShield Audit Report #: 2025-045

contact@peckshield.com

Public

Document Properties

Client Sake Finance
Title Smart Contract Audit Report
Target Sake Finance

Version 1.0

Author Xuxian Jiang

Auditors Daisy Cao, Xuxian Jiang

FEVIENWEGHOA Xiaomi Huang

AVSI oA Xuxian Jiang

Classification B

Version Info

Version Date Author(s) Description
1.0 February 17, 2025 | Xuxian Jiang | Final Release
1.0-rc1 | February 15, 2025 | Xuxian Jiang | Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Xiaomi Huang
contact@peckshield.com

2/16 PeckShield Audit Report #: 2025-045

Public

Contents

1 Introduction 4
1.1 About Sake Finance (Soneium) 4
1.2 About PeckShield 5
1.3 Methodology 5
1.4 Disclaimer e 7
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings 10
3 Detailed Results 11
3.1 Lack of Caller Validation in UniswapV3 Swap Callback 11

3.2 Improved Logic Consistency Between _convertFreeAssetsToSupplyToken() And -
convertFreeAssetsToSupplyAToken() 12
3.3 Trust Issue Of Admin Keys 13
4 Conclusion 15
References 16

3/16 PeckShield Audit Report #: 2025-045

Public

1 Introduction

Given the opportunity to review the design document and related smart contract source code of
the Sake Finance (Soneium) protocol, we outline in the report our systematic approach to evaluate
potential security issues in the smart contract implementation, expose possible semantic inconsis-
tencies between smart contract code and design document, and provide additional suggestions or
recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.

This document outlines our audit results.

1.1 About Sake Finance (Soneium)

Sake Finance is an innovative platform that introduces the concept of on-chain AT agents to the
world of decentralized finance and beyond. At its core, Sake Finance is designed to empower users
with autonomous, intelligent agents capable of executing a broad spectrum of tasks directly on the
blockchain. These tasks range from complex financial transactions to dynamic roles within interactive
gaming environments, all performed with a level of sophistication and adaptability previously unseen

in traditional crypto bots. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of The Sake Finance Protocol

Name | Sake Finance
Type | EVM Smart Contract
Platform | Solidity
Audit Method | Whitebox
Latest Audit Report | February 17, 2025

In the following, we show the Git repository of reviewed files and the commit hash values used

in this audit.

e https://github.com/AgentFi/agentfi-contracts-soneium.git (509bfcf)

4/16 PeckShield Audit Report #: 2025-045

Public

And here is the commit ID after fixes for the issues found in the audit have been checked in:

e https://github.com/AgentFi/agentfi-contracts-soneium.git (TBD)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram

(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High Medium
3]
f Medium Medium
E

Low Medium

High Medium Low
Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [8]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with

a severity category. For one check item, if our tool or analysis does not identify any issue, the

5/16 PeckShield Audit Report #: 2025-045

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category

Basic Coding Bugs

Check Item |
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

6/16

PeckShield Audit Report #: 2025-045

Public

contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use

the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

7/16 PeckShield Audit Report #: 2025-045

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/16

PeckShield Audit Report #: 2025-045

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Sake Finance (Soneium)
protocol. During the first phase of our audit, we study the smart contract source code and run our
in-house static code analyzer through the codebase. The purpose here is to statically identify known
coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further
manually review business logics, examine system operations, and place DeFi-related aspects under

scrutiny to uncover possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

[|
[|
Informational [|
Total

WLk |R,RIOO

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions

of each of them are in Section 3.

9/16 PeckShield Audit Report #: 2025-045

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity

vulnerability, 1 low-severity vulnerability, and 1 informational suggestion.

Table 2.1: Key Sake Finance Audit Findings

Title

PVE-001 Low Lack of Caller Validation in UniswapV3 | Security Features | Resolved
Swap Callback
PVE-002 | Informational | Improved Logic Consistency Between | Coding Practices | Resolved
_ convertFreeAssetsToSupply Token()
And convertFreeAssetsToSupplyA-
Token()

PVE-003 Medium Trust Issue of Admin Keys Security Features | Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to

Section 3 for details.

10/16 PeckShield Audit Report #: 2025-045

162
163
164
165
166
167
168
169
170
171

172
173
174

Public

3 Detailed Results

3.1 Lack of Caller Validation in UniswapV3 Swap Callback

e |D: PVE-001 e Target: DexAggregator
e Severity: Low e Category: Business Logic [6]
e Likelihood: Low e CWE subcategory: CWE-837 [3]
e Impact: Low
Description

To facilitate the interaction with external DEX engines, Sake Finance has a built-in DexAggregator to
handle token swaps across different protocols. While examining the interaction with the external
UniswapV3 DEX engine, we notice a possible issue that needs to be addressed.

To elaborate, we show below the implementation of the related routine, i.e., uniswapV3SwapCallback
0. As the name indicates, this routine is a callback that will be invoked to execute the desired swaps
and pay the required tokens. However, each callback must be validated to verify that the call is
originated from a genuine Uniswapv3 pool. Otherwise, the pool contract would be vulnerable to
attack via an E0A manipulating the callback function.

function uniswapV3SwapCallback (
int256 amountODelta,
int256 amountiDelta,
bytes calldata _data
) external override(IUniswapV3SwapCallback, IDexAggregator) {
if (! (amountODelta > 0O amountiDelta > 0)) revert Errors.AmountZero();

(, address tokenIn,) = abi.decode(_data, (address, address, address));

uint256 amountToPay = amountODelta > 0 ? uint256 (amountODelta) : uint256(

amountiDelta);

SafeERC20.safeTransfer (IERC20 (tokenIn), msg.sender, amountToPay);

LiSth1g 3.1: DexAggregator: :uniswapV3SwapCallback()

11/16 PeckShield Audit Report #: 2025-045

836
837
838
839
840
841
842
843
844
845
846
847

Public

Recommendation Revise the above routine to properly validate the caller to ensure it is a

genuine UniswapV3 pool.

Status This issue has been resolved in the following commit: 32.

3.2 Improved Logic Consistency Between
__convertFreeAssetsToSupplyToken() And
__convertFreeAssetsToSupplyAToken()

e |ID: PVE-002 e Target: LooperModuleA/B

e Severity: Informational e Category: Coding Practices [5]

e Likelihood: N/A o CWE subcategory: CWE-1126 [1]
e Impact: N/A

Description

The Sake Finance protocol supports a number of modules that can be readily extended and integrated.
While examining a specific module for the Looper strategy, we notice the use of two internal routines
for token swaps can be improved for consistency.

To elaborate, we show below the implementations of these two helper routines in LooperModuleA.
These two routines are designed to convert unused assets to SupplyToken and SupplyAToken, respec-
tively. It comes to our attention that the first one does not have the step of converting native
currency Ether to WETH, while the second one does (line 844). Note this inconsistency is also present
in another contract, i.e., LooperModuleB.

function _convertFreeAssetsToSupplyToken() internal {
_convertBorrowToken (true) ;

_convertSupplyATokenToSupplyToken () ;

/// @notice Converts all free assets to the supplyAToken.

/// @dev Assumes no borrow debt.

function _convertFreeAssetsToSupplyAToken() internal {
_convertEthToWeth () ;
_convertBorrowToken (false) ;
_convertSupplyTokenToSupplyAToken () ;

}

LiStth 3.2: LooperModuleA: : _convertFreeAssetsToSupplyToken()/_convertFreeAssetsToSupplyAToken ()

Recommendation Revise the above-mentioned routines for improved consistency.

Status This issue has been resolved in the following commit: 32.

12/16 PeckShield Audit Report #: 2025-045

https://https://github.com/AgentFi/agentfi-contracts-soneium/commit/32
https://https://github.com/AgentFi/agentfi-contracts-soneium/commit/32

96
97
98

99
100
101
102
103
104
105
106
107
108

109
110
111
112
113

114
115

116
117
118

119
120
121
122

Public

3.3 Trust Issue Of Admin Keys

e |ID: PVE-003 e Target: Multiple Contracts

* Severity: Medium e Category: Security Features [4]
o Likelihood: Medium e CWE subcategory: CWE-287 [2]
e Impact: Medium

Description

In the Sake Finance contract, there is a privileged account (owner) that plays a critical role in governing
and regulating the protocol-wide operations (e.g., configure various system parameters, manage
factory/roles, and lock contract accounts). In the following, we show the representative functions
potentially affected by the privilege of the privileged account.

function setRoles(SetRolesParam[] calldata params) external payable override {
_strategyManagerPrecheck () ;
AccessControlLibrary.AccessControlLibraryStorage storage acls =
AccessControlLibrary.accessControlLibraryStorage () ;
for(uint256 i = 0; i < params.length; ++i) {
bytes32 role = params[i].role;
address account = params[i].account;
bool grantAccess = params[i].grantAccess;
acls.assignedRoles[role] [account] = grantAccess;

emit RoleAccessChanged(role, account, grantAccess);

function executeByStrategyManager (ExecuteByStrategyManagerParam calldata params)
external payable virtual override returns (bytes memory result) {
_strategyManagerPrecheck () ;

result = LibExecutor._execute(params.to, O, params.data, LibExecutor.OP_CALL);

function executePayableByStrategyManager (ExecutePayableByStrategyManagerParam
calldata params) external payable virtual override returns (bytes memory result)
{
_strategyManagerPrecheck () ;
result = LibExecutor._execute(params.to, params.value, params.data, LibExecutor.
OP_CALL) ;

function executeBatchByStrategyManager (ExecuteByStrategyManagerParam[] calldata
params) external payable virtual override returns (bytes[] memory results) {
_strategyManagerPrecheck () ;
results = new bytes[](params.length);
for(uint256 i = 0; i < params.length; ++i) {
results[i] = LibExecutor._execute(params[i].to, O, params[i].data,
LibExecutor .0P_CALL);

13/16 PeckShield Audit Report #: 2025-045

Public

123 }
124 }

Listing 3.3: Example Privileged Operations in strategyAgentAccount

We emphasize that the privilege assignment may be necessary and consistent with the protocol
design. However, it is worrisome if the privileged account is not governed by a pao-like structure.
Note that a compromised account would allow the attacker to modify a number of sensitive system

parameters, which directly undermines the assumption of the protocol design.

Recommendation Promptly transfer the privileged account to the intended pao-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-

tended trustless nature and high-quality distributed governance.

Status The issue has been confirmed and will be mitigated with the use of a multi-sig to

manage the privileged account.

14/16 PeckShield Audit Report #: 2025-045

Public

4 Conclusion

In this audit, we have analyzed the design and implementation of the Sake Finance protocol, which is
an innovative platform that introduces the concept of on-chain A1 agents to the world of decentral-
ized finance and beyond. At its core, Sake Finance is designed to empower users with autonomous,
intelligent agents capable of executing a broad spectrum of tasks directly on the blockchain. These
tasks range from complex financial transactions to dynamic roles within interactive gaming environ-
ments, all performed with a level of sophistication and adaptability previously unseen in traditional
crypto bots. The current code base is well structured and neatly organized. Those identified issues
are promptly confirmed and addressed.

Meanwhile, we need to emphasize that solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in

scope/coverage.

15/16 PeckShield Audit Report #: 2025-045

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.
org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/
data/definitions/837.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.
[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk Rating

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

16/16 PeckShield Audit Report #: 2025-045

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Sake Finance (Soneium)
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Lack of Caller Validation in UniswapV3 Swap Callback
	Improved Logic Consistency Between _convertFreeAssetsToSupplyToken() And _convertFreeAssetsToSupplyAToken()
	Trust Issue Of Admin Keys

	Conclusion
	References

