Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

Sake Finance

Prepared By: Xiaomi Huang

PeckShield
December 20, 2024

1/20 PeckShield Audit Report #: 2024-288

contact@peckshield.com

Public

Document Properties

Client Sake Finance

Title Smart Contract Audit Report

Target Sake Finance

Version 1.0

Author Xuxian Jiang

Auditors Daisy Cao, Xuxian Jiang

FEVIENWEGHOA Xiaomi Huang

AVSI oA Xuxian Jiang

Classification B

Version Info

Version Date
1.0 December 20, 2024

Author(s)
Xuxian Jiang

Description
Final Release

1.0-rc December 16, 2024

Xuxian Jiang

Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Email contact@peckshield.com

2/20

PeckShield Audit Report #: 2024-288

Public

Contents
1 Introduction 4
1.1 About Sake Finance 4
1.2 About PeckShield 5
1.3 Methodology 5
1.4 Disclaimer e 9
2 Findings 10
2.1 Summary . ..o 10
22 Key Findings 11
3 Detailed Results 12
3.1 Timely Rate Adjustment Upon Pool Interest Rate Strategy Change 12
3.2 Improved Asset Addition Logic in ConfiguratorLogic 13
3.3 Accommodation of Non-ERC20-Compliant Tokens 14
3.4 Trust Issue of Admin Keys L 16
4 Conclusion 19
References 20

3/20 PeckShield Audit Report #: 2024-288

Public

1 Introduction

Given the opportunity to review the design document and related smart contract source code of the
Sake Finance protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines

our audit results.

1.1 About Sake Finance

Sake Finance protocol forks from Aavev3 — the popular decentralized non-custodial money market
protocol where users can participate as depositors or borrowers. Depositors provide liquidity to
the market to earn a passive income, while borrowers are able to borrow in an over-collateralized
(perpetually) or under-collateralized (one-block liquidity) fashion. Sake Finance maintains the same
core business logic, but reconstructs with new oracle support. The basic information of the audited

protocol is as follows:

Table 1.1: Basic Information of Sake Finance

Item Description

Name | Sake Finance
Type | Ethereum Smart Contract
Platform | Solidity
Audit Method | Whitebox
Latest Audit Report | December 20, 2024

In the following, we show the Git repositories of reviewed files and the commit hash value used
in this audit. Note that Sake Finance assumes a trusted price oracle with timely market price feeds

for supported assets.

4/20 PeckShield Audit Report #: 2024-288

Public

e https://github.com/Sake-Finance/sake-core.git (a92997¢)

e https://github.com/Sake-Finance/sone-core.git (f8e8b51)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

e https://github.com/Sake-Finance/sake-core.git (d46e78d)

e https://github.com/Sake-Finance/sone-core.git (e3e7a96)

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram

(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

High

Medium

Medium

Impact

High Medium Low

Low Medium

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [9]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;

e Severity demonstrates the overall criticality of the risk.

5/20 PeckShield Audit Report #: 2024-288

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues

found by our tool.

e Semantic Consistency Checks: We then manually check the logic of implemented smart con-

tracts and compare with the description in the white paper.

e Advanced DeFi Scrutiny: We further review business logics, examine system operations, and

place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with

respective fixes.

6/20 PeckShield Audit Report #: 2024-288

Public

Table 1.3: The Full Audit Checklist

Category

Basic Coding Bugs

Checklist Items |
Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Semantic Consistency Checks

Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

7/20

PeckShield Audit Report #: 2024-288

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category

Configuration

Summary

Weaknesses in this category are typically introduced during

the configuration of the software.

Data Processing Issues

Weaknesses in this category are typically found in functional-
ity that processes data.

Numeric Errors

Weaknesses in this category are related to improper calcula-
tion or conversion of numbers.

Security Features

Weaknesses in this category are concerned with topics like
authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State

Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management

Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues

Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic

Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup

Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters

Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues

Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices

Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8,/20

PeckShield Audit Report #: 2024-288

Public

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

9/20 PeckShield Audit Report #: 2024-288

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the sake Finance protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to

uncover possible pitfalls and/or bugs.

Severity ‘ # of Findings
Critical
High
Medium

Low

Informational
Total

Ol WL |O|O

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of

them are in Section 3.

10/20 PeckShield Audit Report #: 2024-288

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 1 medium-severity

vulnerability and 3 low-severity vulnerabilities.

Table 2.1: Key Sake Finance Audit Findings

Title Category Status

PVE-001 Low Timely Rate Adjustment Upon Pool In- | Business Logic Resolved
terest Rate Strategy Change
PVE-002 Low Improved Asset Addition Logic in Con- | Business Logic Resolved
figuratorLogic
PVE-003 Low Accommodation of None-ERC20- | Coding Practices | Resolved
Compliant Tokens
PVE-004 | Medium | Trust Issue of Admin Keys Security Features | Mitigated

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3

for details.

11/20 PeckShield Audit Report #: 2024-288

628

629
630
631
632
633
634

Public

3 Detailed Results

3.1 Timely Rate Adjustment Upon Pool Interest Rate Strategy

Change
e |D: PVE-001 e Target: Pool
e Severity: Low e Category: Business Logic [7]

o Likelihood: Low e CWE subcategory: CWE-837 [4]

e Impact: Low

Description

The sake Finance protocol allows the governance to dynamically configure the interest rate strategy
for current reserves. The supported interest rate strategy implements the calculation of the interest
rates depending on the reserve state. While reviewing current configuration logic, we notice the
update of the interest rate strategy warrants the need of refreshing the latest stable borrow rate, the
latest variable borrow rate, as well as the latest liquidity rate.

To elaborate, we show below the setReserveInterestRateStrategyAddress() function. It imple-
ments a rather straightforward logic in validating and applying the new interestRateStrategyAddress
contract. It comes to our attention that the internal accounting for various rates is not timely re-
freshed to make it immediately effective. As a result, even if the interest rate strategy is already
updated, current rates are not updated yet. In other words, the latest stable/variable borrow rate
and the latest liquidity rate are still based on the replaced interest rate strategy.

function setReservelnterestRateStrategyAddress(address asset, address
rateStrategyAddress)
external
virtual
override

onlyPoolConfigurator

require (asset != address(0), Errors.ZERO_ADDRESS_NOT_VALID);

12/20 PeckShield Audit Report #: 2024-288

Public

635 require(_reserves[asset].id != 0 _reservesList[0] == asset, Errors.ASSET_NOT_LISTED
)

636 _reserves [asset].interestRateStrategyAddress = rateStrategyAddress;

637 }

LiStth 3.1: Pool::setReservelnterestRateStrategyAddress ()

Recommendation Revise the above logic to apply the given interestRateStrategyAddress for

the input reserve.

Status This issue has been resolved as the team confirms the plan to timely update the interest

rate before applying the new strategy.

3.2 Improved Asset Addition Logic in ConfiguratorLogic

e |ID: PVE-002 e Target: ConfiguratorLogic

e Severity: Low e Category: Coding Practices [6]
e Likelihood: Low e CWE subcategory: CWE-561 [3]
e |Impact: Low

Description

The Sake Finance protocol has a core ConfiguratorLogic contract to allow for dynamic update of
protocol parameters. In the process of examining the related setters, we notice one specific setter
can be improved.

In particular, we show below the implementation of this related setter routine, i.e., executeInitReserve
. As the name indicates, it is used to initialize a reserve by creating and initializing aToken, stable
debt token, and variable debt token. It comes to our attention that it requires the underlying token's

decimals to be larger than ReserveConfiguration.DEBT_CEILING_DECIMALS.

50 function executelInitReserve (

51 IPool pool,

52 ConfiguratorInputTypes.InitReservelnput calldata input
53) public {

54 address aTokenProxyAddress = _initTokenWithProxy (
55 input.aTokenImpl,

56 abi.encodeWithSelector (

57 IInitializableAToken.initialize.selector,

58 pool,

59 input.treasury,

60 input.underlyingAsset,

61 input.incentivesController,

62 input.underlyingAssetDecimals,

63 input.aTokenName ,

13/20 PeckShield Audit Report #: 2024-288

Public

64 input.aTokenSymbol,
65 input.params

66)

67)

68

69 }

Listing 3.2: cConfiguratorLogic: :executeInitReserve ()

Recommendation Revise the above setter to ensure the given reserve’s underlying asset meets

the minimal decimals requirement.

Status This issue has been fixed in the following commit: d46e7sd.

3.3 Accommodation of Non-ERC20-Compliant Tokens

e |D: PVE-003 e Target: Multiple Contracts

e Severity: Low e Category: Coding Practices [6]

o Likelihood: Low e CWE subcategory: CWE-1126 [1]
e Impact: Low

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and analyze possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., UsDpT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(! ((_value '= 0)
&% (allowed[msg.sender] [_spender] '= 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve () /
transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#tissuecomment-263524729).

194 /%%

195 * @dev Approve the passed address to spend the specified amount of tokens on behalf
of msg.sender.

196 * @param _spender The address which will spend the funds.

197 * Q@param _value The amount of tokens to be spent.

198 */

199 function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {

201 // To change the approve amount you first have to reduce the addresses®

202 // allowance to zero by calling ‘approve(_spender, 0)°¢ if it is not

14/20 PeckShield Audit Report #: 2024-288

https://github.com/Sake-Finance/sake-core/commit/d46e78d

203
204
205

207
208
209

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

62
63
64
65
66
67

Public

// already O to mitigate the race condition described here:
// https://github.com/ethereum/EIPs/issues/20#issuecomment -263524729

require (! ((_value != 0) && (allowed[msg.sender]|[spender] != 0)));
allowed [msg.sender][spender] = value;
Approval (msg.sender, spender, _value);

Listing 3.3: USDT Token Contract

Because of that, a normal call to approve () is suggested to use the safe version, i.e., safeApprove ()
, In essence, it is a wrapper around ERC20 operations that may either throw on failure or return false
without reverts. Moreover, the safe version also supports tokens that return no value (and instead
revert or throw on failure). Note that non-reverting calls are assumed to be successful. Similarly,
there is a safe version of transfer() as well, i.e., safeTransfer().

/%%

* @dev Deprecated. This function has issues similar to the ones found in

* {IERC20-approvel}, and its usage is discouraged.

*

* Whenever possible, use {safelncreaseAllowance} and

* {safeDecreaseAllowance} instead.

*/

function safeApprove(
IERC20 token,
address spender,
uint256 value

) intermal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// ’safelncreaseAllowance’ and ’safeDecreaseAllowance’
require (

(value == 0) (token.allowance (address (this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"

)
_callOptionalReturn(token, abi.encodeWithSelector (token.approve.selector,

spender, value));

LiSthﬁg 3.4: SafeERC20: : safeApprove ()

In current implementation, if we examine the StakedTokenTransferStrategy: : renewApproval () rou-
tine that is designed to renew the token approval to the stake contract. To accommodate the specific
idiosyncrasy, there is a need to use safeApprove(), instead of approve() (lines 64, 65, and 73).

/// @inheritdoc IStakedTokenTransferStrategy
function renewApproval () external onlyRewardsAdmin {
IERC20 (UNDERLYING_TOKEN) . approve (address (STAKE_CONTRACT), 0);
IERC20 (UNDERLYING_TOKEN) . approve (
address (STAKE_CONTRACT) ,
type (uint256) .max

15/20 PeckShield Audit Report #: 2024-288

Public

68) g

69 }

70

71 /// @inheritdoc IStakedTokenTransferStrategy

72 function dropApproval() external onlyRewardsAdmin {

73 IERC20 (UNDERLYING_TOKEN) . approve (address (STAKE_CONTRACT), 0);
74 }

LiSth1g 3.5: StakedTokenTransferStrategy: :renewApproval () /dropApproval ()
Note other contracts can be similarly improved, including Collector, SoneAToken, and PsmAToken.

Recommendation =~ Accommodate the above-mentioned idiosyncrasy about ERC20-related

approve().

Status This issue has been fixed in the following commit: 7cb7acc.

3.4 Trust Issue of Admin Keys

e |ID: PVE-004 e Target: Multiple Contracts

e Severity: Medium e Category: Security Features [5]
e Likelihood: Medium e CWE subcategory: CWE-287 [2]
e Impact: Medium

Description

In the sake Finance protocol, there are a few privileged admin accounts that play a critical role in
governing and regulating the system-wide operations (e.g., parameter setting and marketing adjust-
ment). It also has the privilege to control or govern the flow of assets managed by this protocol.
Our analysis shows that the privileged account needs to be scrutinized. In the following, we examine

the privileged account and their related privileged accesses in current contracts.

398 function setUnbackedMintCap (

399 address asset,

400 uint256 newUnbackedMintCap

401) external override onlyRiskOrPoolAdmins {

402 DataTypes.ReserveConfigurationMap memory currentConfig = _pool.getConfiguration(
asset) ;

403 uint256 oldUnbackedMintCap = currentConfig.getUnbackedMintCap();

404 currentConfig.setUnbackedMintCap (newUnbackedMintCap) ;

405 _pool.setConfiguration(asset, currentConfig);

406 emit UnbackedMintCapChanged(asset, oldUnbackedMintCap, newUnbackedMintCap);

407 }

408

409 /// @inheritdoc IPoolConfigurator

410 function setReservelnterestRateStrategyAddress(

16/20 PeckShield Audit Report #: 2024-288

https://github.com/Sake-Finance/sake-core/commit/7cb7acc

411
412
413
414
415
416
417

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

452

453
454
455
456
457
458

Public

address asset,
address newRateStrategyAddress

) external override onlyRiskOrPoolAdmins {
DataTypes.ReserveData memory reserve = _pool.getReserveData(asset);
address oldRateStrategyAddress = reserve.interestRateStrategyAddress;
_pool.setReservelnterestRateStrategyAddress (asset, newRateStrategyAddress);
emit ReservelnterestRateStrategyChanged(asset, oldRateStrategyAddress,

newRateStrategyAddress) ;

/// @inheritdoc IPoolConfigurator
function setPoolPause(bool paused) external override onlyEmergencyAdmin {

address [] memory reserves = _pool.getReservesList();

for (uint256 i = 0; i < reserves.length; i++) {
if (reserves[i] != address(0)) {

setReservePause (reserves[i], paused);

/// @inheritdoc IPoolConfigurator
function updateBridgeProtocolFee(uint256 newBridgeProtocolFee) external override
onlyPoolAdmin {
require (
newBridgeProtocolFee <= PercentageMath.PERCENTAGE_FACTOR,
Errors.BRIDGE_PROTOCOL_FEE_INVALID
)
uint256 oldBridgeProtocolFee = _pool.BRIDGE_PROTOCOL_FEE() ;
_pool.updateBridgeProtocolFee (newBridgeProtocolFee) ;
emit BridgeProtocolFeeUpdated(oldBridgeProtocolFee, newBridgeProtocolFee);

/// @inheritdoc IPoolConfigurator
function updateFlashloanPremiumTotal (
uint128 newFlashloanPremiumTotal
) external override onlyPoolAdmin {
require (
newFlashloanPremiumTotal <= PercentageMath.PERCENTAGE_FACTOR,
Errors.FLASHLOAN_PREMIUM_INVALID
)
uint128 oldFlashloanPremiumTotal = _pool.FLASHLOAN_PREMIUM_TOTAL ();
_pool.updateFlashloanPremiums (newFlashloanPremiumTotal , _pool.
FLASHLOAN_PREMIUM_TO_PROTOCOL ());
emit FlashloanPremiumTotalUpdated(oldFlashloanPremiumTotal, newFlashloanPremiumTotal

) g

/// @inheritdoc IPoolConfigurator
function updateFlashloanPremiumToProtocol(
uint128 newFlashloanPremiumToProtocol

) external override onlyPoolAdmin {

17/20 PeckShield Audit Report #: 2024-288

459
460
461
462
463
464

465
466
467
468
469

Public

require (
newFlashloanPremiumToProtocol <= PercentageMath.PERCENTAGE_FACTOR,
Errors.FLASHLOAN_PREMIUM_INVALID
);
uint128 oldFlashloanPremiumToProtocol = _pool.FLASHLOAN_PREMIUM_TO_PROTOCOL () ;
_pool.updateFlashloanPremiums (_pool.FLASHLOAN_PREMIUM_TOTAL (),
newFlashloanPremiumToProtocol) ;
emit FlashloanPremiumToProtocolUpdated (
oldFlashloanPremiumToProtocol ,
newFlashloanPremiumToProtocol

)

Listing 3.6: Example Privileged Functions in the PoolConfigurator Contract

If these privileged admin accounts are managed by a plain EOA account, this may be worrisome
and pose counter-party risk to the exchange users. A multi-sig account could greatly alleviate
this concern, though it is still far from perfect. Specifically, a better approach is to eliminate the
administration key concern by transferring the role to a community-governed DAO. In the meantime,
a timelock-based mechanism can also be considered as mitigation.

Moreover, it should be noted that current contracts have the support of being deployed behind
a proxy. And there is a need to properly manage the proxy-admin privileges as they fall in this trust

issue as well.

Recommendation Promptly transfer the privileged account to the intended pao-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been mitigated as the team has confirmed that these privileged functions

should be called by a trusted multi-sig account, not a plain EOA account.

18/20 PeckShield Audit Report #: 2024-288

Public

4 Conclusion

In this audit, we have analyzed the design and implementation of the Sake Finance protocol, which
forks from aaveva — the popular decentralized non-custodial money market protocol where users
can participate as depositors or borrowers. Depositors provide liquidity to the market to earn a
passive income, while borrowers are able to borrow in an over-collateralized (perpetually) or under-
collateralized (one-block liquidity) fashion. sake Finance maintains the same core business logic, but
reconstructs with new oracle support. The current code base is well structured and neatly organized.
Those identified issues are promptly confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in

scope/coverage.

19/20 PeckShield Audit Report #: 2024-288

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.
[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.
[3] MITRE. CWE-561: Dead Code. https://cwe.mitre.org/data/definitions/561.html.

[4] MITRE. CWE-837: Improper Enforcement of a Single, Unique Action. https://cwe.mitre.org/
data/definitions/837.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254 . html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/
1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/
840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk

Rating Methodology.

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

20/20 PeckShield Audit Report #: 2024-288

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/837.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Sake Finance
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Timely Rate Adjustment Upon Pool Interest Rate Strategy Change
	Improved Asset Addition Logic in ConfiguratorLogic
	Accommodation of Non-ERC20-Compliant Tokens
	Trust Issue of Admin Keys

	Conclusion
	References

